

## NCERT Solutions for 9th Class Maths: Chapter 7 Triangles

Class 9: Maths Chapter 7 solutions. Complete Class 9 Maths Chapter 7 Notes.

## NCERT Solutions for 9th Class Maths : Chapter 7 Triangles

NCERT 9th Maths Chapter 7, class 9 Maths Chapter 7 solutions
Page No: 118

## Exercise 7.1

1. In quadrilateral $A C B D, A C=A D$ and $A B$ bisects $\angle A$ (see Fig. 7.16). Show that $\triangle A B C \cong$ $\triangle A B D$. What can you say about $B C$ and $B D$ ?


Fig. 7.16

## Answer

Given,
$A C=A D$ and $A B$ bisects $\angle A$
To prove,
$\triangle \mathrm{ABC} \cong \triangle \mathrm{ABD}$
Proof,

In $\triangle A B C$ and $\triangle A B D$,
$A B=A B$ (Common)
$A C=A D$ (Given)
$\angle \mathrm{CAB}=\angle \mathrm{DAB}(\mathrm{AB}$ is bisector $)$

Therefore, $\triangle A B C \cong \triangle A B D$ by SAS congruence condition.
$B C$ and $B D$ are of equal length.

Page No: 119
2. $A B C D$ is a quadrilateral in which $A D=B C$ and $\angle D A B=\angle C B A$ (see Fig. 7.17). Prove that
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/
(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{BAC}$
(ii) $B D=A C$
(iii) $\angle \mathrm{ABD}=\angle \mathrm{BAC}$.


Fig. 7.17

## Answer

Given,
$\mathrm{AD}=\mathrm{BC}$ and $\angle \mathrm{DAB}=\angle \mathrm{CBA}$
(i) In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{BAC}$,
$A B=B A($ Common)
$\angle \mathrm{DAB}=\angle \mathrm{CBA}$ (Given)
$A D=B C$ (Given)
Therefore, $\triangle \mathrm{ABD} \cong \triangle \mathrm{BAC}$ by SAS congruence condition.
(ii) Since, $\triangle A B D \cong \triangle B A C$

Therefore BD = AC by CPCT
(iii) Since, $\triangle A B D \cong \triangle B A C$

Therefore $\angle A B D=\angle B A C$ by CPCT
3. $A D$ and $B C$ are equal perpendiculars to a line segment $A B$ (see Fig. 7.18). Show that CD bisects AB.
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/


Fig. 7.18

## Answer

Given,
$A D$ and $B C$ are equal perpendiculars to $A B$.
To prove,
$C D$ bisects $A B$
Proof,
In $\triangle A O D$ and $\triangle B O C$,
$\angle \mathrm{A}=\angle \mathrm{B}$ (Perpendicular)
$\angle A O D=\angle B O C$ (Vertically opposite angles)
$A D=B C$ (Given)
Therefore, $\triangle \mathrm{AOD} \cong \triangle \mathrm{BOC}$ by AAS congruence condition.
Now,
$A O=O B(C P C T) . C D$ bisects $A B$.
4. I and $m$ are two parallel lines intersected by another pair of parallel lines $p$ and $q$ (see Fig. 7.19). Show that $\triangle A B C \cong \triangle C D A$.


Fig. 7.19

## Answer

Given,
I || m and p || q
To prove,
$\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$

Proof,
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDA}$,
$\angle \mathrm{BCA}=\angle \mathrm{DAC}$ (Alternate interior angles)
$\mathrm{AC}=\mathrm{CA}$ (Common)
$\angle \mathrm{BAC}=\angle \mathrm{DCA}$ (Alternate interior angles)
Therefore, $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$ by ASA congruence condition.
5. Line $I$ is the bisector of an angle $\angle A$ and $B$ is any point on $I$. $B P$ and $B Q$ are perpendiculars from $B$ to the arms of $\angle A$ (see Fig. 7.20). Show that:
(i) $\triangle \mathrm{APB} \cong \triangle \mathrm{AQB}$
(ii) $\mathrm{BP}=\mathrm{BQ}$ or B is equidistant from the arms of $\angle \mathrm{A}$.


Fig. 7.20

Answer
Given,
I is the bisector of an angle $\angle A$.
$B P$ and $B Q$ are perpendiculars.
(i) In $\triangle A P B$ and $\triangle A Q B$,
$\angle \mathrm{P}=\angle \mathrm{Q}$ (Right angles)
$\angle \mathrm{BAP}=\angle \mathrm{BAQ}$ (I is bisector)
$A B=A B$ (Common)
Therefore, $\triangle \mathrm{APB} \cong \triangle \mathrm{AQB}$ by AAS congruence condition.
(ii) $\mathrm{BP}=\mathrm{BQ}$ by CPCT. Therefore, B is equidistant from the arms of $\angle \mathrm{A}$.

NCERT 9th Maths Chapter 7, class 9 Maths Chapter 7 solutions
Page No: 120
6. In Fig. 7.21, $A C=A E, A B=A D$ and $\angle B A D=\angle E A C$. Show that $B C=D E$.


Fig. 7.21

## Answer

Given,
$A C=A E, A B=A D$ and $\angle B A D=\angle E A C$

To show,
$B C=D E$
Proof,
$\angle B A D=\angle E A C$ (Adding $\angle D A C$ both sides)
$\angle B A D+\angle D A C=\angle E A C+\angle D A C$
$\Rightarrow \angle B A C=\angle E A D$
In $\triangle A B C$ and $\triangle A D E$,
$A C=A E$ (Given)
$\angle B A C=\angle E A D$
$A B=A D$ (Given)
Therefore, $\triangle \mathrm{ABC} \cong \triangle \mathrm{ADE}$ by SAS congruence condition.
$B C=D E$ by CPCT.
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/
7. $A B$ is a line segment and $P$ is its mid-point. $D$ and $E$ are points on the same side of $A B$ such that $\angle B A D=\angle A B E$ and $\angle E P A=\angle D P B$ (see Fig. 7.22). Show that
(i) $\triangle \mathrm{DAP} \cong \triangle \mathrm{EBP}$
(ii) $A D=B E$


Fig. 7.22

## Answer

Given,
$P$ is mid-point of $A B$.
$\angle \mathrm{BAD}=\angle \mathrm{ABE}$ and $\angle \mathrm{EPA}=\angle \mathrm{DPB}$
(i) $\angle E P A=\angle D P B$ (Adding $\angle D P E$ both sides)
$\angle E P A+\angle D P E=\angle D P B+\angle D P E$
$\Rightarrow \angle D P A=\angle E P B$
In $\triangle \mathrm{DAP} \cong \triangle \mathrm{EBP}$,
$\angle D P A=\angle E P B$
$A P=B P(P$ is mid-point of $A B)$
$\angle B A D=\angle A B E$ (Given)
Therefore, $\triangle \mathrm{DAP} \cong \triangle \mathrm{EBP}$ by ASA congruence condition.
(ii) $A D=B E$ by CPCT.
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/

## ClindCareer

8. In right triangle $A B C$, right angled at $C, M$ is the mid-point of hypotenuse $A B$. $C$ is joined to $M$ and produced to a point $D$ such that $D M=C M$. Point $D$ is joined to point B (see Fig. 7.23). Show that:
(i) $\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$
(ii) $\angle \mathrm{DBC}$ is a right angle.
(iii) $\triangle D B C \cong \triangle A C B$
(iv) $C M=1 / 2 A B$


Fig. 7.23

## Answer

Given,
$\angle \mathrm{C}=90^{\circ}, \mathrm{M}$ is the mid-point of AB and $\mathrm{DM}=\mathrm{CM}$
(i) In $\triangle A M C$ and $\triangle B M D$,
$A M=B M(M$ is the mid-point $)$
$\angle \mathrm{CMA}=\angle \mathrm{DMB}$ (Vertically opposite angles)
$\mathrm{CM}=\mathrm{DM}$ (Given)
Therefore, $\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$ by SAS congruence condition.
(ii) $\angle \mathrm{ACM}=\angle \mathrm{BDM}($ by CPCT$)$
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/
ClindCareer

Therefore, $\mathrm{AC}|\mid \mathrm{BD}$ as alternate interior angles are equal.
Now,

$$
\begin{aligned}
& \angle \mathrm{ACB}+ \\
& \angle \mathrm{DBC}=180^{\circ} \text { (co-interiors angles) } \\
& \Rightarrow 90^{\circ}+\angle \mathrm{B}=180^{\circ} \\
& \Rightarrow \angle \mathrm{DBC}=90^{\circ}
\end{aligned}
$$

(iii) In $\triangle D B C$ and $\triangle A C B$,
$B C=C B$ (Common)
$\angle \mathrm{ACB}=\angle \mathrm{DBC}$ (Right angles)
DB = AC (byy CPCT, already proved)
Therefore, $\triangle \mathrm{DBC} \cong \triangle \mathrm{ACB}$ by SAS congruence condition.
(iv) $\mathrm{DC}=\mathrm{AB}(\triangle \mathrm{DBC} \cong \triangle \mathrm{ACB})$
$\Rightarrow \mathrm{DM}=\mathrm{CM}=\mathrm{AM}=\mathrm{BM}(\mathrm{M}$ is mid-point $)$
$\Rightarrow \mathrm{DM}+\mathrm{CM}=\mathrm{AM}+\mathrm{BM}$
$\Rightarrow \mathrm{CM}+\mathrm{CM}=\mathrm{AB}$
$\Rightarrow C M=1 / 2 A B$
Page No: 123
NCERT 9th Maths Chapter 7, class 9 Maths Chapter 7 solutions

## Exercise 7.2

1. In an isosceles triangle $A B C$, with $A B=A C$, the bisectors of $\angle B$ and $\angle C$ intersect each other at $O$. Join $A$ to $O$. Show that :
(i) $\mathrm{OB}=\mathrm{OC}$
(ii) AO bisects $\angle \mathrm{A}$
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/


## Answer

Given,
$\mathrm{AB}=\mathrm{AC}$, the bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ intersect each other at O
(i) Since $A B C$ is an isosceles with $A B=A C$,
$\therefore \angle B=\angle C$
$\Rightarrow 1 / 2 \angle B=1 / 2 \angle C$
$\Rightarrow \angle \mathrm{OBC}=\angle \mathrm{OCB}$ (Angle bisectors.)
$\Rightarrow \mathrm{OB}=\mathrm{OC}$ (Side opposite to the equal angles are equal.)
(ii) In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{AOC}$,
$A B=A C$ (Given)
$\mathrm{AO}=\mathrm{AO}$ (Common)
OB = OC (Proved above)
Therefore, $\triangle A O B \cong \triangle A O C$ by SSS congruence condition.
$\angle \mathrm{BAO}=\angle \mathrm{CAO}$ (by CPCT)
Thus, AO bisects $\angle \mathrm{A}$.
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/
2. In $\triangle A B C, A D$ is the perpendicular bisector of $B C$ (see Fig. 7.30). Show that $\triangle A B C$ is an isosceles triangle in which $A B=A C$.


Fig. 7.30

## Answer

Given,
$A D$ is the perpendicular bisector of $B C$
To show,
$A B=A C$

Proof,
In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ADC}$,
$A D=A D$ (Common)
$\angle \mathrm{ADB}=\angle \mathrm{ADC}$
$B D=C D(A D$ is the perpendicular bisector)
Therefore, $\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$ by SAS congruence condition.
$A B=A C(b y C P C T)$
NCERT 9th Maths Chapter 7, class 9 Maths Chapter 7 solutions
Page No: 124
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/
3. $A B C$ is an isosceles triangle in which altitudes $B E$ and $C F$ are drawn to equal sides $A C$ and $A B$ respectively (see Fig. 7.31). Show that these altitudes are equal.


Fig. 7.31

## Answer

Given,
$B E$ and CF are altitudes.
$A C=A B$
To show,
$B E=C F$
Proof,

In $\triangle A E B$ and $\triangle A F C$,
$\angle \mathrm{A}=\angle \mathrm{A}$ (Common)
$\angle \mathrm{AEB}=\angle \mathrm{AFC}$ (Right angles)
$A B=A C$ (Given)
Therefore, $\triangle A E B \cong \triangle A F C$ by $A A S$ congruence condition.
Thus, BE = CF by CPCT.
NCERT 9th Maths Chapter 7, class 9 Maths Chapter 7 solutions
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/

## elndCareer

4. $A B C$ is a triangle in which altitudes $B E$ and $C F$ to sides $A C$ and $A B$ are equal (see Fig. 7.32). Show that
(i) $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$
(ii) $A B=A C$, i.e., $A B C$ is an isosceles triangle.


Fig. 7.32

## Answer

Given,
$B E=C F$
(i) In $\triangle A B E$ and $\triangle A C F$,
$\angle \mathrm{A}=\angle \mathrm{A}$ (Common)
$\angle A E B=\angle A F C$ (Right angles)
$B E=C F$ (Given)
Therefore, $\triangle A B E \cong \triangle A C F$ by AAS congruence condition.
(ii) Thus, $A B=A C$ by CPCT and therefore $A B C$ is an isosceles triangle.
5. ABC and DBC are two isosceles triangles on the same base BC (see Fig. 7.33). Show that $\angle A B D=\angle A C D$.


Fig. 7.33

## Answer

Given,
$A B C$ and $D B C$ are two isosceles triangles.
To show,
$\angle A B D=\angle A C D$
Proof,
In $\triangle A B D$ and $\triangle A C D$,
$A D=A D$ (Common)
$A B=A C(A B C$ is an isosceles triangle. $)$
$B D=C D(B C D$ is an isosceles triangle.)
Therefore, $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$ by SSS congruence condition. Thus, $\angle \mathrm{ABD}=\angle \mathrm{ACD}$ by CPCT.
6. $\triangle A B C$ is an isosceles triangle in which $A B=A C$. Side $B A$ is produced to $D$ such that $A D=A B$ (see Fig. 7.34). Show that $\angle B C D$ is a right angle.
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/


Fig. 7.34

## Answer

Given,
$A B=A C$ and $A D=A B$
To show,
$\angle B C D$ is a right angle.
Proof,
In $\triangle \mathrm{ABC}$,
$A B=A C$ (Given)
$\Rightarrow \angle A C B=\angle A B C$ (Angles opposite to the equal sides are equal.)
In $\triangle A C D$,
$A D=A B$
$\Rightarrow \angle A D C=\angle A C D$ (Angles opposite to the equal sides are equal.)
Now,
In $\triangle \mathrm{ABC}$,
$\angle C A B+\angle A C B+$
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/

## ClndCareer

$\angle \mathrm{ABC}=180^{\circ}$
$\Rightarrow \angle C A B+2 \angle A C B=180^{\circ}$
$\Rightarrow \angle C A B=180^{\circ}-2 \angle A C B--$ (i)
Similarly in $\triangle A D C$,
$\angle C A D=180^{\circ}-2 \angle A C D--$ (ii)
also,
$\angle C A B+\angle C A D=180^{\circ}(B D$ is a straight line. $)$
Adding (i) and (ii)
$\angle C A B+\angle C A D=180^{\circ}-2 \angle A C B+180^{\circ}-2 \angle A C D$
$\Rightarrow 180^{\circ}=360^{\circ}-2 \angle A C B-2 \angle A C D$
$\Rightarrow 2(\angle \mathrm{ACB}+\angle \mathrm{ACD})=180^{\circ}$
$\Rightarrow \angle B C D=90^{\circ}$
7. $A B C$ is a right angled triangle in which $\angle A=90^{\circ}$ and $A B=A C$. Find $\angle B$ and $\angle C$.

Answer


Given,

$$
\angle A=90^{\circ} \text { and } A B=A C
$$

## ClndCareer

A/q,
$A B=A C$
$\Rightarrow \angle \mathrm{B}=\angle \mathrm{C}$ (Angles opposite to the equal sides are equal.)
Now,
$\angle A+\angle B+\angle C=180^{\circ}$ (Sum of the interior angles of the triangle.)
$\Rightarrow 90^{\circ}+2 \angle B=180^{\circ}$
$\Rightarrow 2 \angle B=90^{\circ}$
$\Rightarrow \angle B=45^{\circ}$
Thus, $\angle \mathrm{B}=\angle \mathrm{C}=45^{\circ}$
8. Show that the angles of an equilateral triangle are $60^{\circ}$ each.

## Answer



Let $A B C$ be an equilateral triangle.
$B C=A C=A B$ (Length of all sides is same)
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}$ (Sides opposite to the equal angles are equal.)
Also,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow 3 \angle \mathrm{~A}=180^{\circ}$
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/
$\Rightarrow \angle A=60^{\circ}$
Therefore, $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}$
Thus, the angles of an equilateral triangle are $60^{\circ}$ each.
Page No: 128
NCERT 9th Maths Chapter 7, class 9 Maths Chapter 7 solutions

## Exercise 7.3

1. $\triangle A B C$ and $\triangle D B C$ are two isosceles triangles on the same base $B C$ and vertices $A$ and $D$ are on the same side of $B C$ (see Fig. 7.39). If $A D$ is extended to intersect $B C$ at $P$, show that
(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
(ii) $\triangle A B P \cong \triangle A C P$
(iii) AP bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{D}$.
(iv) AP is the perpendicular bisector of BC .


Fig. 7.39

## Answer

Given,
$\triangle A B C$ and $\triangle D B C$ are two isosceles triangles.
(i) In $\triangle A B D$ and $\triangle A C D$,
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/

## ClndCareer

AD = AD (Common)
$A B=A C$ ( $\triangle A B C$ is isosceles $)$
$B D=C D(\triangle D B C$ is isosceles $)$
Therefore, $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$ by SSS congruence condition.
(ii) In $\triangle A B P$ and $\triangle A C P$,
$A P=A P(C o m m o n)$
$\angle \mathrm{PAB}=\angle \mathrm{PAC}(\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$ so by CPCT$)$
$A B=A C$ ( $\triangle A B C$ is isosceles $)$
Therefore, $\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}$ by SAS congruence condition.
(iii) $\angle \mathrm{PAB}=\angle \mathrm{PAC}$ by CPCT as $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$.

AP bisects $\angle \mathrm{A}$. --- (i)
also,
In $\triangle \mathrm{BPD}$ and $\triangle \mathrm{CPD}$,

PD = PD (Common)
$B D=C D(\triangle D B C$ is isosceles. $)$
$B P=C P(\triangle A B P \cong \triangle A C P$ so by $C P C T$.
Therefore, $\triangle \mathrm{BPD} \cong \triangle \mathrm{CPD}$ by SSS congruence condition.
Thus, $\angle B D P=\angle C D P$ by CPCT. --- (ii)
By (i) and (ii) we can say that AP bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{D}$.
(iv) $\angle \mathrm{BPD}=\angle \mathrm{CPD}$ (by CPCT as $\triangle \mathrm{BPD} \cong \triangle \mathrm{CPD})$
and BP = CP --- (i)
also,
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/
$\angle B P D+\angle C P D=180^{\circ}(B C$ is a straight line. $)$
$\Rightarrow 2 \angle \mathrm{BPD}=180^{\circ}$
$\Rightarrow \angle B P D=90^{\circ}--$ (ii)
From (i) and (ii),
$A P$ is the perpendicular bisector of $B C$.

## 2. $A D$ is an altitude of an isosceles triangle $A B C$ in which $A B=A C$. Show that

(i) $A D$ bisects $B C$
(ii) AD bisects $\angle \mathrm{A}$.

## Answer



Given,
$A D$ is an altitude and $A B=A C$
(i) In $\triangle A B D$ and $\triangle A C D$,
$\angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}$
$\mathrm{AB}=\mathrm{AC}$ (Given)
AD = AD (Common)
Therefore, $\triangle A B D \cong \triangle A C D$ by RHS congruence condition.
Now,
$B D=C D($ by CPCT)
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/
ellndCareer

Thus, AD bisects BC
(ii) $\angle \mathrm{BAD}=\angle \mathrm{CAD}$ (by CPCT)

Thus, AD bisects $\angle \mathrm{A}$.
3. Two sides $A B$ and $B C$ and median $A M$ of one triangle $A B C$ are respectively equal to sides PQ and QR and median PN of $\triangle P Q R$ (see Fig. 7.40). Show that:
(i) $\triangle \mathrm{ABM} \cong \triangle \mathrm{PQN}$
(ii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$


Fig. 7.40

## Answer

Given,
$A B=P Q, B C=Q R$ and $A M=P N$
(i) $1 / 2 \mathrm{BC}=\mathrm{BM}$ and $1 / 2 \mathrm{QR}=\mathrm{QN}$ (AM and PN are medians)
also,
$B C=Q R$
$\Rightarrow 1 / 2 B C=1 / 2 Q R$
$\Rightarrow \mathrm{BM}=\mathrm{QN}$
In $\triangle \mathrm{ABM}$ and $\triangle \mathrm{PQN}$,
AM = PN (Given)
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/

## ClindCareer

$A B=P Q$ (Given)
$\mathrm{BM}=\mathrm{QN}$ (Proved above)
Therefore, $\triangle \mathrm{ABM} \cong \triangle \mathrm{PQN}$ by SSS congruence condition.
(ii) In $\triangle A B C$ and $\triangle P Q R$,
$A B=P Q$ (Given)
$\angle A B C=\angle P Q R($ by $C P C T)$
$B C=Q R$ (Given)
Therefore, $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$ by SAS congruence condition.
NCERT 9th Maths Chapter 7, class 9 Maths Chapter 7 solutions
4. $B E$ and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle $A B C$ is isosceles.

## Answer



Fig. 7.31

Given,
BE and CF are two equal altitudes.
In $\triangle B E C$ and $\triangle C F B$,
$\angle \mathrm{BEC}=\angle \mathrm{CFB}=90^{\circ}$ (Altitudes)
$B C=C B$ (Common)
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/
$B E=C F$ (Common)
Therefore, $\triangle \mathrm{BEC} \cong \triangle \mathrm{CFB}$ by RHS congruence condition.
Now,
$\angle \mathrm{C}=\angle \mathrm{B}$ (by CPCT)
Thus, $A B=A C$ as sides opposite to the equal angles are equal.
5. $A B C$ is an isosceles triangle with $A B=A C$. Draw $A P \perp B C$ to show that $\angle B=$ $\angle C$.

## Answer



Given,
$A B=A C$
In $\triangle A B P$ and $\triangle A C P$,
$\angle \mathrm{APB}=\angle \mathrm{APC}=90^{\circ}$ (AP is altitude)
$\mathrm{AB}=\mathrm{AC}$ (Given)
AP = AP (Common)
Therefore, $\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}$ by RHS congruence condition.
Thus, $\angle \mathrm{B}=\angle \mathrm{C}$ (by CPCT)
Page No: 132
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/
ClindCareer

## elndCareer

NCERT 9th Maths Chapter 7, class 9 Maths Chapter 7 solutions

## Exercise 7.4

1. Show that in a right angled triangle, the hypotenuse is the longest side.

## Answer


$A B C$ is a triangle right angled at $B$.
Now,
$\angle A+$
$\angle B+$
$\angle C=180^{\circ}$
$\Rightarrow \angle A+\angle C=90^{\circ}$ and $\angle B$ is $90^{\circ}$.
Since, $B$ is the largest angle of the triangle, the side opposite to it must be the largest.
So, $B C$ is the hypotenuse which is the largest side of the right angled triangle $A B C$.
2. In Fig. 7.48, sides $A B$ and $A C$ of $\triangle A B C$ are extended to points $P$ and $Q$ respectively. Also, $\angle P B C<\angle Q C B$. Show that $A C>A B$.


Fig. 7.48

## Answer

Given,
$\angle P B C<\angle Q C B$
Now,
$\angle \mathrm{ABC}+\angle \mathrm{PBC}=180^{\circ}$
$\Rightarrow \angle A B C=180^{\circ}-\angle P B C$
also,
$\angle A C B+\angle Q C B=180^{\circ}$
$\Rightarrow \angle \mathrm{ACB}=180^{\circ}-\angle \mathrm{QCB}$
Since,
$\angle \mathrm{PBC}<\angle \mathrm{QCB}$ therefore, $\angle \mathrm{ABC}>\angle \mathrm{ACB}$
Thus, $A C>A B$ as sides opposite to the larger angle is larger.
3. In Fig. 7.49, $\angle B<\angle A$ and $\angle C<\angle D$. Show that $A D<B C$.


Fig. 7.49

## Answer

Given,

$$
\angle \mathrm{B}<\angle \mathrm{A} \text { and } \angle \mathrm{C}<\angle \mathrm{D}
$$

Now,
$\mathrm{AO}<\mathrm{BO}$--- (i) (Side opposite to the smaller angle is smaller)
OD < OC ---(ii) (Side opposite to the smaller angle is smaller)
Adding (i) and (ii)
$A O+O D<B O+O C$
$\Rightarrow A D<B C$
4. $A B$ and $C D$ are respectively the smallest and longest sides of a quadrilateral ABCD (see Fig. 7.50).

Show that $\angle A>\angle C$ and $\angle B>\angle D$.


Fig. 7.50

## Answer

In $\triangle \mathrm{ABD}$,
$\mathrm{AB}<\mathrm{AD}<\mathrm{BD}$
$\therefore \angle \mathrm{ADB}<\angle \mathrm{ABD}$--- (i) (Angle opposite to longer side is larger.)
Now,
In $\triangle B C D$,
$B C<D C<B D$
$\therefore \angle \mathrm{BDC}<\angle \mathrm{CBD}--$ (ii)
Adding (i) and (ii) we get,
$\angle \mathrm{ADB}+\angle \mathrm{BDC}<\angle \mathrm{ABD}+\angle \mathrm{CBD}$
$\Rightarrow \angle A D C<\angle A B C$
$\Rightarrow \angle B>\angle D$
Similarly,
In $\triangle \mathrm{ABC}$,
$\angle \mathrm{ACB}<\angle \mathrm{BAC}--$ (iii) (Angle opposite to longer side is larger.)
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/

Now,
In $\triangle \mathrm{ADC}$,
$\angle D C A<\angle D A C--$ (iv)
Adding (iii) and (iv) we get,

```
\(\angle \mathrm{ACB}+\angle \mathrm{DCA}<\angle \mathrm{BAC}+\angle \mathrm{DAC}\)
\(\Rightarrow \angle B C D<\angle B A D\)
\(\Rightarrow \angle A>\angle C\)
```

5. In Fig 7.51, $\mathrm{PR}>\mathrm{PQ}$ and PS bisects $\angle \mathrm{QPR}$. Prove that $\angle \mathrm{PSR}>\angle \mathrm{PSQ}$.


Fig. 7.51

## Answer

Given,
$\mathrm{PR}>\mathrm{PQ}$ and PS bisects $\angle \mathrm{QPR}$

To prove,
$\angle P S R>\angle P S Q$

Proof,
$\angle P Q R>\angle P R Q$--- (i) (PR > PQ as angle opposite to larger side is larger.)
$\angle \mathrm{QPS}=\angle \mathrm{RPS}--$ (ii) (PS bisects $\angle \mathrm{QPR})$
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/

## ClndCareer

$\angle \mathrm{PSR}=\angle \mathrm{PQR}+$
$\angle$ QPS --- (iii) (exterior angle of a triangle equals to the sum of opposite interior angles)
$\angle P S Q=\angle P R Q+\angle R P S$--- (iv) (exterior angle of a triangle equals to the sum of opposite interior angles)

Adding (i) and (ii)
$\angle P Q R+\angle Q P S>\angle P R Q+\angle R P S$
$\Rightarrow \angle \mathrm{PSR}>\angle \mathrm{PSQ}$ [from (i), (ii), (iii) and (iv)]
Page No: 133
NCERT 9th Maths Chapter 7, class 9 Maths Chapter 7 solutions
6. Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

## Answer



Let $/$ is a line segment and $B$ is a point lying o it. We drew a line $A B$ perpendicular to $I$. Let C be any other point on $I$.

To prove,
$A B<A C$
Proof,
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/
ClndCareer

In $\triangle \mathrm{ABC}$,
$\angle B=90^{\circ}$
Now,
$\angle A+$
$\angle B+$
$\angle C=180^{\circ}$
$\Rightarrow \angle \mathrm{A}+\angle \mathrm{C}=90^{\circ}$
$\therefore \angle \mathrm{C}$ must be acute angle. or $\angle \mathrm{C}<\angle \mathrm{B}$
$\Rightarrow A B<A C$ (Side opposite to the larger angle is larger.)
Chapter 7 Triangles NCERT Solutions which will be helpful in revising the important theorems and topics. A closed figure formed by three intersecting lines is called a triangle. We will be studying the congruence of triangles, rules of congruence, some more properties of triangles and inequalities in a triangle.

- Congruence of Triangles: Two congruent figures have exactly the same shape and size. In congruent triangles corresponding parts are equal and we write in short 'CPCT' for corresponding parts of congruent triangles.
- Criteria for Congruence of Triangles:

SAS congruence rule- Two triangles are congruent if two sides and the included angle of one triangle are equal to the two sides and the included angle of the other triangle.

ASA congruence rule- Two triangles are congruent if two angles and the included side of one triangle are equal to two angles and the included side of other triangle. Two triangles are congruent if any two pairs of angles and one pair of corresponding sides are equal. This is called the AAS Congruence Rule.

- Some Properties of a Triangle: Angles opposite to equal sides of an isosceles triangle are equaland the converse is the sides opposite to equal angles of a triangle are equal.
- Some More Criteria for Congruence of Triangles:


## https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/

## ClndCareer

SSS congruence rule- If three sides of one triangle are equal to the three sides of another triangle, then the two triangles are congruent.

RHS congruence rule- If in two right triangles the hypotenuse and one side of one triangle are equal to the hypotenuse and one side of the other triangle, then the two triangles are congruent.

- Inequalities in a Triangle:
(i) If two sides of a triangle are unequal, the angle opposite to the longer side is larger (or greater).
(ii) In any triangle, the side opposite to the larger (greater) angle is longer.
(iii) The sum of any two sides of a triangle is greater than the third side.

There are total five exercises in which last one is optional. These Chapter 7 NCERT Solutions are will increase your understanding of Triangles and will increase concentration among students. Below we have provided exercisewise NCERT Solutions which you can check.

Our subject matter experts have prepared these NCERT Solutions through which one can clear their doubts and understand them easily.

## NCERT Solutions for Class 9 Maths Chapters:

## FAQ on Chapter 7 Triangles

How many exercises in Chapter 7 Triangles?
Chapter 7 Triangles consists of total five exercises however one is optional not useful for the purpose of exams but will check your in depth knowledge. Here Indcareer Schools experts have provided accurate and detailed solutions of every question.

## Each of the equal angles of an isosceles triangle is $38^{\circ}$, what is the measure of the third angle?

Let the third angle $=x$

$$
\begin{aligned}
& \therefore \mathrm{x}+38^{\circ}+38^{\circ}=180^{\circ} \\
& \Rightarrow \mathrm{x}=180^{\circ}-38^{\circ}-38^{\circ}
\end{aligned}
$$

## https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/

## ClndCareer

$=104^{\circ}$
Find the measure of each of acute angle in a right angle isosceles triangle.
Let the measure of each of the equal acute angle of the $\Delta$ be $x$
$\therefore$ We have: $\mathrm{x}+\mathrm{x}+90^{\circ}=180^{\circ}$
$\Rightarrow x+x=180^{\circ}-90^{\circ}=90^{\circ}$
$\Rightarrow x=\left(90^{\circ} / 2\right)=45^{\circ}$
If two angles are $(30 \angle a)^{\circ}$ and $(125+2 a)^{\circ}$ and they are supplement of each other. Find the value of ' $a$ '.
$(30-a)^{\circ}$ and $(125+2 a)^{\circ}$ are supplement to each other.
$\therefore(30-a+125+2 a)^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{a}=180^{\circ}-125^{\circ}-30^{\circ}=25^{\circ}$
$\Rightarrow$ Value of $a=25^{\circ}$
NCERT 9th Maths Chapter 7, class 9 Maths Chapter 7 solutions

## ElndCareer

## Chapterwise NCERT Solutions for Class 9 Maths :

- Chapter 1 Number System
- Chapter 2 Polynomials
- Chapter 3 Coordinate Geometry
- Chapter 4 Linear Equations in Two Variables
- Chapter 5 Introduction to Euclid's Geometry
- Chapter 6 Lines and Angles
- Chapter 7 Triangles
- Chapter 8 Quadrilaterals
- Chapter 9 Areas of Parallelograms and Triangles
- Chapter 10 Circles
- Chapter 11 Constructions
- Chapter 12 Heron's Formula
- Chapter 13 Surface Areas and Volumes
- Chapter 14 Statistics
- Chapter 15 Probability


## https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/

## ClndCareer

## About NCERT

The National Council of Educational Research and Training is an autonomous organization of the Government of India which was established in 1961 as a literary, scientific, and charitable Society under the Societies Registration Act. The major objectives of NCERT and its constituent units are to: undertake, promote and coordinate research in areas related to school education; prepare and publish model textbooks, supplementary material, newsletters, journals and develop educational kits, multimedia digital materials, etc.Organise pre-service and in-service training of teachers; develop and disseminate innovative educational techniques and practices;collaborate and network with state educational departments, universities, NGOs and other educational institutions; act as a clearing house for ideas and information in matters related to school education; and act as a nodal agency for achieving the goals of Universalisation of Elementary Education.In addition to research, development, training, extension, publication and dissemination activities, NCERT is an implementation agency for bilateral cultural exchange programmes with other countries in the field of school education.Its headquarters are located at Sri Aurobindo Marg in New Delhi. Visit the Official NCERT website to learn more.
https://www.indcareer.com/schools/ncert-solutions-for-9th-class-maths-chapter-7-triangles/
ClndCareer

