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EXERCISE 30.1 PAGE NO: 30.3

1. Find the derivative of f(x) =3x at x =2
Solution:

Given:

f(x) = 3x

By using the derivative formula,

f'la) = lim fla+h) - fla)
h—0 Ji {Where, h is a small positive number}

Derivativeof f{x)= 3xatx =2 is given as
oy _ e 2+ 1) — f(2)
fe =
- 3(2+h)—-3x2
= lim
h—=0 h

_ g hte-6 _3h
B h T it h

=1lim3 =3
h—=0

Hence,
Derivativeoff(x)=3xatx=21is 3

2. Find the derivative of f(x) = x?—2 atx =10
Solution:

Given:

f(x)=x*-2

By using the derivative formula,
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Derivativeofx?— 2 atx = 10is given as

£010) — Tim F10+ 1) — f(10)

h—0 h
(10 + h)*—2—-(10°-2)
= lim
h—o0 h
100 + h? + 20h—2—100 + 2 h? + 20h
= lim = lim ———
h—0 h h—o h
li hh + 20) lim(h + 20
- dm Ty - G 20
=0+20=20

Hence,

Derivative of f(x) = x2—2 at x = 10 is 20

3. Find the derivative of f(x) = 99x at x = 100.
Solution:

Given:

f(x) = 99x

By using the derivative formula,

f'la) = lim fla+h) - fla)
h—+0 h {Where h is a very small positive number}
Derivativeof 99x at x=1001s given as

£(100) = lim F(100+ h) — £(100)

h
99(100 + h) — 99 x 100

= lim
h—0 h
9900 + 99h — 9900 99h
= lim = lim —
h—o0 h h—0 h

= lim 99 = 99
h—0

Hence,
Derivative of f{x)=99x atx=1001is 99
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4. Find the derivative of f(x) = x at x =1
Solution:

Given:

f(x) = x

By using the derivative formula,

£(a) = lim fla+h) — fla)
h—+0 h {Where h is a very small positive number}
Derivativeofx at x =1 is given as

fj[ljl — hm f[l + h]l _ f[ljl

h—s) h
o (1+h)-1
_hlinu h
_ 1+h-1 o h
= h = a2k
=liml =1

h—=o0

Hence,
Derivativeoff(x)=xatx=11is1

5. Find the derivative of f(x) =cos xat x =0
Solution:

Given:

f(x) = cos x

By using the derivative formula,
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() = lim fla+h) — fla)
h—0 i {Where h is a very small positive number}
Derivativeofcosx atx = 0 is given as

fj[[]]l _ }II_}I% f(D + h] _ f(D:I

1
cos(h) — cos0

- 1:1115-1[] h
_ i cosh—1
= ato h

Let us try and evaluate the limit.
We know that 1 —cos x = 2 sin(x/2)
So.
. -h
~ —(1—cosh) __ 2sin"3
B tlulﬁl 0 h B lrlulin o h
Divide the numerator and denominatorby 2 to get the form (sin x)/x to apply

sandwich theorem.

2 511'12%
- tluiElu h22 xh
2
Byv using algebra of limits we get
sin%
= — lim I x lim h
h—=0 i h—=o0
2 "
[By using the formula:ilﬂlu x l]

f(0)=—1x0=0
S Derivativeoff(x) =cosxatx=01s 0

6. Find the derivative of f(x) =tan x at x =0
Solution:

Given:

f(x) = tan x
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By using the derivative formula,

voov o fla+h) — fla)
f'la) = .'111—>H{1] i {Where h is a small positive number}
Derivativeofcosxatx = 0 is given as
ey — i 40+ 1) — f(0)
10 = i ==,
~ i tan (h) — tan0

h—o0 h
_ tanh
= lim

h—0o h [Since it is of indeterminate form]

tan x

By using the formula: 31{1310 . 1 {i.e., sandwich theorem}

f0)=1
“ Derivativeoff(x) =tanxatx=01s 1

7. Find the derivatives of the following functions at the indicated points:
(i) sin x at x = /2

(i) xatx=1

(iii) 2 cos x at x = 1r/2

(iv) sin 2xat x = 1/2

Solution:

(i) sin x at x = /2

Given:

f (x) = sin x

By using the derivative formula,
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() = Tim fla+nh) — fla)

h—+0 I {Where h is a small positive number}
Derivativeofsinx atx = m/2 is given as
(2 = i LEED S

2 h—0 f1
sin (g + h) — sin%
= lim
h—=o0 h

— lim cosh-1
h—-o b {vsin(n/2+x)=cosx}

[Since it is of indeterminate form. Let us try to evaluate the limit.]

We know that 1 — cos x = 2 sin?(x/2)

= lim
h h—=o0 h
Divide the numerator and denominator by 2 to get the form (sin x)/X to apply

sandwich theorem.

2511’12%
- _ lim —2
B l:lllin[] h? xh
2
Using algebra of limits we get
sin}il
= — lim B x lim h
h—=o0 i h—=o0
2
. llm Sin X _ 1
[B}'r llﬂmgthe formula:x—o0 x ]

' (m/2)=—1x0=0
~Derivativeoff(x)=sinx atx=m/2is 0

(i) xatx=1

Given:
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f(x)=x
By using the derivative formula,

ff(a] — lim f[tl-|— h] _ f[a]
h—+0 h {Where h 1s a very small positive number}

Derivativeofx at x =1 is given as

fL+h) — (1)

1) = 1
') hl—I}?J h
o (1+h)—-1
_hlinu h
I 1+h-1 - h
hlinu h hlinuﬁ
=liml =1
h—=o0
Hence,

Derivativeoff(x)=xatx=11is1

(iii) 2 cos x at x = /2

Given:
f(x) =2 cos x

By using the derivative formula,
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h—+0) i {Where h is a small positive number}
Derivativeof 2cos x at X = /2 is given as

f ([) i JE N - f5)

2 h—l J’I
2c0s (E + h) — ZCDSE
_ 2 2
= lim
h—=o0 ] h
_ ].lIIl —2sinh

h—=0 h {vcos (/2 +xX)=-sinx}
[Since it is of indeterminate form]
sinh

—2 lim
= h—=o h

- li sin x
By using the formula: 0 x
f(m/2)=-2x1=-2
“Derivativeoff(x) =2cosx atx=mn/2is -2

=1

(iv) sin 2xat x = 1r/2
Solution:

Given:

f (x) = sin 2x

By using the derivative formula,

€IndCareer


https://www.indcareer.com/schools/rd-sharma-solutions-for-class-11-maths-chapter-30-derivatives/
https://www.indcareer.com/schools/rd-sharma-solutions-for-class-11-maths-chapter-30-derivatives/

el Nnuuarcci

vy flath) = fla)
f'la) = fl:.l—prr{ln I {Where h is a small positive number}
Derivativeof sin2x atx = /2 is given as
f! (E) = lim f[i +h) - f[ijl

2 h—10 h

5111{2 X g + h)}— sin2 x g
h

sin{m + 2h)—sinm

= lim
h—0

= lim : : .
h—o0 h {vsin(m+x)=—smx &sinn=0}
lim — sin2h—0
=
. sin 2h
= TaZo n

[Since it is of indeterminate form. We shall apply sandwich theorem to evaluate the limit.]

Now, multiply numerator and denominator by 2, we get

EXERCISE 30.2 PAGE NO: 30.25

1. Differentiate each of the following from first principles:
(i) 2/x

(i) 1x

(i) 1/x3

(iv) [x* + 1)/ x

(v) [x2-1]/x

Solution:
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f(x) =2/x
By using the formula,
d . flz+h)—f(z)

By substituting the values we get,
2 2

— z+h T
hﬂ h
2¢ — 2x — 2h
m
0 hzx(z+ h)
B —2h

= lim
h—0 h:ﬂ(ﬂ: + h)

= lim—
h—0 :E(it: + h)
When h=0, we get
—2
72
=-2x2
.". Derivative of f(x) = 2/x is -2x
(i) 1x
Given:

f(x) = 1x

By using the formula,
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d . flz+h)—f(z)
dr (f(z)) = ,]rfﬂ h
By substituting the values we get,
11
li vzth ‘l.fE
= lim
h—0 h

Bv using algebra oflimits, we get
. VT —+z+h g VZ+vz+h
= lim
h—0 h,/xy/z +h VZ+yvz+h
h

£ — I —

TR hyEVETR (VG VETR)
_h

TN hyEvE TR (yE S Ve )

—1
= lim
h0 \/ZVx + h (/T + vz + h)
Whenh=0, we get
B —1
ﬁvl& (VZ + /)
B x X 2,/T
—1
= 3
2x?
1 s
= ——x1
5 T
.". Derivative of f(x) = 1/\x is -1/2 x*?

(iii) 1/x3
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f(x)=1/x3

By using the formula,

d . flz+h)-f(z)

By substituting the values we get,
1 1

. (z+h)? z3
=1
hﬂr h
s — (z + h)3

Bvusing the formula [a°*—b® = (a—b) (a2 + ab+ b?)]
z? — z° — 3z2’h — 3zh? — b*

h—0 h(z 4+ h)3z3
i —32%h — 3zh? — h*
o hl}l%p h(m + h)3$3 Whenh=0, we get
2
h (—3z® — 3zh — h?) _ 3%
= lim 3 3 mﬁ
h—0 h(z + h)*z _3
_ lim (—3:1:2 — 3zh — hz) =
h=0 (z + h)*z? = 3z *

.". Derivative of f(x) = 1/x? is -3x*
(iv) [x2 + 1]/ x

Given:

f(x)=[x*+ 1]/ x

By using the formula,
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d . flz+h)—f(z)

By substituting the values we get,

(z+h)*+1 z? 41

. t-h T
= lim
h—0 h
Upon expansion,
r*+2zh+h®+1 2’41
. x+h T
= lim
h—0 h

By using algebra oflimits, we get
i z® +2x’h+ h’z+x— 2 —2*h—x — h
= lim
h—0 zh(z + h)
b x*h+ hx —h
=0 xh(x+ h)
. h(z*+hx—1)
= lim
hs0  zh(z+ h)
224+ hr—1
= lim
hs0 z(x+ h)
Whenh=10, we get
2 —1

2

=1-1/x*

.". Derivative of f(x) = 1 — 1/x?
(V) [x*=1]/x

Given:

f(x)=[x*-11/x
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By using the formula,

d . f(z+h)—f(x)

By substituting the values we get,
(z+h)*—1 x?—1

. r+h T
= lim
h—0 h
Upon expansion,
*+2zht+h*-1 2?1
. z+h T
= lim
h—0 h

Byvusing algebra of limits, we get
I o+ 2z’h+h?z —z— 2> —2?h+z+ h
= Iim
h—0 zh(z + h)
b x*h+ h°x + h
=0 xh(x+ h)
. h(z®? +hz+1)
= lim
-0  zh(z + h)
2+ hr+1
= lim
hs0 x(x+ h)
Whenh=0, we get
z? +1
12
=1+1/x2
~ Derivativeoff(x) =1+ 1/x2

2. Differentiate each of the following from first principles:
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(iii) e™*®
Solution:
(i) &
Given:
f(x) = e™

By using the formula,

d . f(z+h)—f(z)

By substifuting the values we get,
e —(z+h) _ e T

d
2 (e®) = 1
G h

e =T -h =z

L = (=

= lim
h—0 h
Taking e ~* common, we have

e (E_h — 1)

h—s0 h
-h
. — . -1
lim e x lim =
= h—=0 h—=o0o -h

X (—1)

e¥—1

lim

We know that, x—0 * = logce =1

—h
.. e =1
= —e "lim ————
hs0 —h
So.

= e (1)

frd —E_I

“ Derivative of f (x) = -e*
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(i) e*
Given:
f(x) = e

By using the formula,

d . flz+h)—f(z)
By substituting the values we get,
d 3z+h) _ g3z

iz . €
— (e = lim
dx ( ) h—s0 h
EEI 63.& . & -

[
= lim
h—0 h
Taking e —* common, we have
i E3:': (EEh . 1)
= 11Im
h—0 3h
Byvusing algebra of limits,
ezh—l

lim e®* x lim
-0 h—=o h

Since we cannot substitute the value of h directly, we take

zh_
lim e3* x lim =——x 3
= h—=0 h—=o 32h
lim &% — log.e = 1
We know that, x—0 x
ah
e =1
=3¢ lim ———
hs0 3h
= 3¢ (1)
— 363I

~ Derivative of f (x) = 3%

(iiii) e
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Given:

f (x) = e

By using the formula,

flz+h) - f(=)

d .
dr (f(z)) = lim

h—0 h
By substifuting the values we get,
al{x+h)+b ar-b
i(ear-l—ﬁ) — }im € ( ) — €
dx h—0 h
Ea:r-l—beah ea.t—l—b
= lim
h—s0 h

Taking e=*? common, we have
Eaz-l—b (Eah o 1)

= lim
h—0 h
Byvusing algebra of limits,
lim e3*+® x Jim ot
Since we cannot substitute the value ofh directly, we take
lim e3+® x lim S—"tx a
= h—=0 h—=o0 ah
el
lim == = log.,e =1
We know that, x—=0 x
h
e —1
= ae®™*? lim
h—0 ah
_ {IEET—H} (1)
_ ﬂEaI+b

% Derivative of f (x) = ae=*?
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3. Differentiate each of the following from first principles:
(i) V(sin 2x)

(i) sin x/x

Solution:

(i) V(sin 2x)

Given:

f (x) = V(sin 2x)

By using the formula,
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d . f(@z+h)—f(z)
E(f(m)] :};lf%}

h
By substituting the values we get,

. v/sin(2z + 2h) — +/sin 2z
= lim

h—s0 h

Multiply numerator and denominatorby ~(sin 2(x + h)) + V(sin 2x), we have

I v/sin(2z + 2h) — +/sin2z  4/sin(2z + 2h) + v/sin 2z
= 111 hod

h—0 h \/sin(Z:x + 2h) + 4/sin 2z
Bvusinga’—bl=(a+b)(a—b). we get
. sin(2x + 2h) — sin 2z
= lim
h=0 (\/sin(Zm + 2h) + afsin?:t:)

By using the formula,

CcC+D C—-D
sénC—sinD:%us( —; )Siﬂ( 5 )

es
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9 ms( 21‘+22h+21) Sin( 2z+22h—2:c )
= lim
h=0 p (\/Sin(Zm + 2h) + +/sin 2:1:)
_ lim 2 cos(2x + h) sinh

h=0p (\/Sin(Z:s + 2h) + 4/sin 2:1:)

By applving limits to each term, we get

= lim 2 cos(2z + h) lim SIE lim

h—0 h—0 h—0 (\/SiH(ZSE + Zh) + 1/si]1 ZI)

1
= 2cos 2z (1)
v/sin 2z + +/sin 2x

B 2cos2x

2+/sin 2x

cos 2x

v/ sin 2x

~ Derivative of f (x) = cos 2x / V(sin 2x)
(ii) sin x/x
Given:
f (x) = sin x/x

By using the formula,
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d;l: h—0 h
By substituting the values we get,
sin(z+h)  sing
. h T
= lim —=F
h—0 h
zsin(x + h) — (z + h)sinz
= lim
h—0 hz (z + h)
Bv using algebra of limits,
. z (sinzcosh + coszsinh) — xsinz — hsinz
= lim
h—0 hz (z + h)
I xsinxcosh + xcosxsinh —xzsinxz — hsinzx
= lim
h—0 hz (z + h)
I rsinxcosh —zsinxz +xcosxsinh — hsinzx
= lim
h—0 hz (z + h)
By applying limits to each term, we get
_ rsinz lim cosh —1 N T COS T lim sin h lim 1 sin & lim 1
a h0 h r hs0 h hsoxz+h r hsox+h
_ _ —25i112% xcosx ., sinh 1 sinz _, 1
= zrsinz lim - lim lim - im
h—0 h T hs0 h rsozx+h x hs0ox+h
_ rsineli —ESiDE% y h 4 Zeosz sin h i 1 sinz 1
- sm hlﬂ:- ﬁTi 4 T hl_lfll] h :..1_1+I|1]$+h T hﬂx+h
h I COST sin h 1 sin x 1
= —gsinzx x lim — + lim lim - i
h—0 2 x hs0 h hsoxz+h x hsozx+h
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Whenh=0, we get

1 .
— _rsing (E) (U) i COST SinT

T x?
COsS T sin x
T x?
By taking LCM, we get
rcosr —sinx
:EE
~ Derivative of f (x) = [x cos x — sinx]/x?

4. Differentiate the following from first principles:
(i) tan? x

(ii) tan (2x + 1)

Solution:

(i) tan? x

Given:

f (x) = tan? x

By using the formula,
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d . f(z+h)—f()
E(f(m)] :j]jf%

h
By substituting the values we get.

tan?(z + h) — tan’z
T o Gt

h—0 h
Bvusing (a+b)(a—b)=a?-b? we have

[tan(z + h) + tan z] [tan(z + h) — tan x|
A0

h
Replacing tan with sin/cos,
sin(z-+h) 4 sin T sin(z+h)  sina
I cos(z+h) COS T cos(z+h) Cos T
= 111
h—0 h
By taking LCM,

. [sin(z + h)cosx + cos(x + h)sinz| [sin(z + h) cosx — cos(x + h) sin z]
= lim
h—0

h cos? x cos?(x + h)

[sin(2z + h)| [sin k|
h—0 hcos? z cos?(x + h)

By applying limits to each term. we get

1 sin h 1
lim sin(2z + h) lim lim
cosZx h0 ( )h_m h k-0 cos?(z + h)
Whenh=0, we get
1 . 1
" cosz sm(?m] (1) cos?
1 . 1
5 2sinx cosx 5
COS“ COS* T
sin 1
=2 x X 5
COS T Ccos® T
— 2tanzsec’

~ Derivativeof f (x) = 2 tanx sec? x
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(ii) tan (2x + 1)
Given:
f(x)=tan (2x + 1)
By using the formula,
dx h—0 h
By substituting the values we get.,
tan(2z + 2h 4+ 1) — tan(2z + 1)

R0 h
Replacing tan with sin/cos,
sin(2z+2h+1)  sin(2z+1)

— lim cos(2z+2h+1) cos(2z+1)

h—0 h
By taking LCM,

sin (2z + 2h + 1) cos(2z + 1) — cos(2z + 2h + 1) sin(2z + 1)

= nm

h—0 hcos(2z + 2h + 1) cos(2z + 1)

sin(2z +2h+1— 2z — 1)

= lim
h—0 hcos(2x + 2h + 1) cos(2z + 1)
By applving limits to each term, we get

1 sin(2h) 1
= im x 2 lim
cos(2x + 1) hs0  2h h—0 cos(2z + 2h + 1)
Whenh=0, we get
1 1
= X 2 X
cos(2z + 1) cos(2z + 1)
2

cos?(2z + 1)

= 2sec’(2z + 1)
~ Derivative of f (x) =2 sec2 (2x+ 1)
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5. Differentiate the following from first principles:
(i) sin v2x

(i) cos Vx

Solution:

(i) sin \V2x

Given:

f (x) = sin V2x

f (x + h) = sin V2(x+h)

By using the formula,
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d flz+h) - f(o)
il — L
75 (f(2)) = lim .
By substituting the values we get,
sin v/2x + 2h — sin/ 2z

— i
hlful] h
Byvusing the formula,
sinC — sinl) = 2sin ¢-D cos C+D
2 2
ESiJJ(\IEm 4+ 2h — «uﬂm) cus(\fﬂm + 2h — \32.1:)
= lim
h—0 h
Byvusing algebra of limits,
9 % 2sin ( 1f2:+2;—~..f"2_= ) cos ( J2=+2;+v’2_= )
- }11211] 2h + 2 — 2x
VZx+ 2h—/Zx
To use the sandwich theorem to evaluate the limit, we need 2 in
denominator.

9 % 9 sin( 1f_zz+22h—q’2_z) ms( 1fﬂz+22h—v=’2_z)

= lim

0 (m — «Jﬁ) V2 + 2h+ 2z
2 x 2sin(M)cﬂs(M)

= lim
W (T (Vo v ah 4 V)
By applying limits to each term. we get
sin ( 1,3’_2:+22_h—@ ) 9 ms( Vi +22T:—JE )
= lim lim

h—0 (ﬂﬁﬂﬂh—v’ﬁ) h—0 /22 + 2h + 22
Whenh=0, we get

X 2cosy2z V2e -+ lim
2+/2x " R0 (—m)
2

sin (—@_ﬁ )
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cos/ 21

V2z

~ Derivative of f (x) = cos V2x / V2x

(i) cos \x

Given:

f (x) = cos Vx

f (x + h) = cos V(x+h)

By using the formula,
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4 (ftay) = im TEZD T

By substifuting the values we get,

cosvx + h —cos/x

=1
hlfilj h
By using the formula,
C+ D Y —D
cosC—cﬂsD_—Esm( ;— ) ( 5 )
. vf'_+,,f"
sin
| () (52)
h—0

By using algebra ofhmﬂs, we get
- [ VErhtyT\ . [ rth-
—2 5]]1( 5 ) sm( 5 )

= lim
Rl z+h—=x
To use the sandwich theorem to evaluate the limit, we need 2 in

denominator.
) sin( Vrihiye ) sin( "’IT;‘”E)

= lim
R0 (Vo TR+ ya) Y

By applyving limits to each term, we get
sin(v’m;ﬁ) —sin(ﬁgg—kﬁ)
= lim

I

h—0 VI+h—yT hlil;l] v+ h+z
7

Whenh=0, we get
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sin (_v’m—ﬁ)

— sin 2
zlx—ﬁ - lim — =1
2./x R0 VEthyT

2
—sin /T
2\x

~ Derivative of f (x) = - sinVx / 2vx

EXERCISE 30.3 PAGE NO: 30.33
Differentiate the following with respect to x:
1. x* — 2sin x + 3 cos x

Solution:

Given:

f (x) = x* — 2sin x + 3 cos x

Differentiate on both the sides with respect to x, we get

4 N P P
(X} = - (x*—2sinx + 3cosx)

Bv using algebra of derivatives.
d

d d
— .4 — — 3 —
(o _ (z*) —2 . (sinz) + 3 . (cos )

We know that,

i nmy n—1
it{x) = nx

d, .
E{smx} = (05X

d .
= (cosx) = —sinx

So.
=4x*-1-2cosx+3 (-sinx)
=4x°—2cosx—3sinx

~ Derivativeoff (X)is 4x°— 2 cosx -3 sinx
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2.3+ x*+ 3
Solution:

Given:
f(x)=3+x*+3°

Differentiate on both the sides with respect to x, we get

d X — X
i{f{xj] — i {3_1( + XE + 33) a{a) = 4d loga
. . - d —
By using algebra of derivatives. -E(CGHSYHH’Q =0
doraxy 4 G o3y 4 @ a3y fP=3%log.3+3x3140
fl = dx{3)+dx{x)+dx{3) =
We know that, =3*log. 3 +3x2

d _ -1
o (X% = nx" ~ Derivative of f (x) is 3*log. 3 + 3x2

3
ax 5
3. — — 24/ + —
3 fmz

Solution:

Given:

1.3

— D

Differentiate on both the sides with respect to x, we get

es
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d d x? 5
L@} =G -2vx+ )
Bvusing algebra of derivatives,

oo w520+ 55 (2)

KZ

1d o3y _o9 o2 4 -2

=3d_1c{xj de(:-:z)+5dx{x )
We know that,

i ny n—1
it{x) = nx

1 _ b _a_
pro 5 (BT —2x7x: 14 5(-2)x 21

1 5 2
=3><Ex —X =z —10x

=xl—x(-1D_10x-3
~ Derivative of f (x) is x? — x(-12 - 10x -3

-3

4. eX'o92 4 galogx 4 galoga
Solution:

Given:

f(x) = g*'°92 4 g2logx 4 galoga
We know that,

e 10 = f(x)

So,

f(x)=a*+x*+a?

Differentiate on both the sides with respect to x, we get
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d d X a a
U} = - (@ +x* + a%)
Byvusing algebra of derivatives,

P COR - CO R Cp

We know that,
i ny n—1
= (x™) = nx
i1'[::'1-“‘) = a*loga
dx
d
= (constant) = 0
f'=a*log.a—ax>'1+0
=a*loga—ax®!
~ Derivative of f (x) is a*loga — ax2-!
5. (2x2 + 1) (3x + 2)
Solution:
Given:
f(x)=(2x*+1)(3x + 2)
=6x3+4x2+3x + 2

Differentiate on both the sides with respect to x, we get
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i{f{:{)} = i (6x* + 4x% + 3x + 2)
By using algebra of derivatives,

. 6= (x%) + 4 (x2) + 3= (%) + +-(2)

We know that,

i my __ n—1
i‘c(x ) = nx

d

.a{mnstan‘c} =0

f'=6(3"1)+42¢ H+3(x* ) +0
=18x2+8x+3+0
= 18x2+8x+3

~ Derivativeof f (x) is 18x2+8x +3

EXERCISE 30.4 PAGE NO: 30.39
Differentiate the following functions with respect to x:
1. x*sin x
Solution:
Let us consider y = x® sin x
We need to find dy/dx
We know that y is a product of two functions say u and v where,
u=x*and v = sin x
Ly=uv
Now let us apply product rule of differentiation.

By using product rule, we get
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& _ g _

dx dx dx ... Equation (1)

As, u=x°

du 3-1 2 d n n—1

@ = X = 3 pauation (2) {Since, = X ) T Xy
As.v=sinXx

dv d . d

ol E{SIHX) = COSX —(sinx) = cosx}

... Equation (3) {Since, dx
From equation (1), we can find dy/dx

dy _ adv o du
ol X ™ + sinx ™
dy _ 3 2
dx X7 COSX + 3x”sinx {Using equation 2 & 3}
dy
3 2 a3
— = X*rosX + 3x°sinx
I.‘ dX
2. x° e~
Solution:

Let us consider y = x* &*
We need to find dy/dx
We know that y is a product of two functions say u and v where,
u=x*andv = e
Ly=uv
Now let us apply product rule of differentiation.

By using product rule, we get
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Y _ g

ax - Vax v:iu...EquaﬁDn (1)

As, u=x3

du d

— = 3x%1 = 3x? : —(x%) = nx*?!
dx ... Equation (2) {dx ) }
As v=e®

E —- i XY — ALK d

dx d_w:(e ) =€ x:] = e¥

... Equation (3) {Since, ax
Now from equation (1), we can find dy/dx
% 3LV | ex 8

— =¥
dx dx dx

dy _ 3 .x 2%
ax X & tixTe {Using equation 2 & 3}

dj.a’ — 2 aX
L Xe (3+x)

}

3. x2e*log x
Solution:
Let us consider y = x? e log x
We need to find dy/dx
We know that y is a product of two functions say u and v where,
u=x?andv=¢
Ly=uv
Now let us apply product rule of differentiation.

By using product rule, we get
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dy _ 4y T
ax - Wa TVW T W ...equation 1
As,u=x?
e G 2 (x") = nx!
dx ... Equation (2) {Since, dx 1
Asg v=ex
dw d % x d
— = —le = g _— x e x
ax = (&) ... Equation (3) {Since, & ¢ ) = €
As.w=logx
T — (logx) = - = (log.x) = =
dx & .. Equation (4) {Since, ax " 08¢ <)
Now. from equatmn 1 we can find dy/dx
ﬂ % ,cdw
i\(—xlﬂg:{ +elﬂgx S ™
Y _ xZe *logx + 2xe*logx + x7e*
dx x {Usmg equation 2, 3 & 4}
d
& xe*(1 + x log x + 2 log x)
& dx
4. x" tan x
Solution:

Let us consider y = x" tan x

We need to find dy/dx

We know that y is a product of two functions say u and v where,
u=x"andv =tanx

Ly=uv

Now let us apply product rule of differentiation.

By using product rule, we get
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@y _ vy g% |

dx dx dx ... Equation 1

As.u=xt

du - d —_
o = ™" Eouation 2 {Since, & X ) = X"
As.v=tanx

dv

d
... Equation 3 {Since, dx
Now. from equation 1, we can find dv/dx

v _ 4 _ 2
= it{tanx) = sec x

. (tanx) = seczx}

dy _ _ndv du

Pl S + tanx .

d_l" — n 2 n—1

a X SeCTX + nxTtanx {Using equation 2 & 3}
dy
2 = x" Y ntanx + x sec’x

=y )

5. x" log, x

Solution:

Let us consider y = x" log, X
We need to find dy/dx
We know that y is a product of two functions say u and v where,
u=x"andv = log, X
Ly=uv
Now let us apply product rule of differentiation.

By using product rule, we get
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dx ~  dx dx ... Equation (1)

As u=xn

E _ n—1 i oy n—1

& — ™ Equation (2) {Since, ax X ) = TX'Ty

As.v=log, x

dv d 1

= = nog.x) = — , . —(log,x) =
* * *108e3  Equation (3) {Since, dx xlogeal

Now, from equation 1, we can find dy/dx

Y _ x4 Jogx X

dx dx 8a dx

dy n_ 1 n—1

— =X + nx" *log_x

dx xlogea 8a {Using equation 2 & 3}

d 1
Yyt nlog, x + ——
- dx log a
EXERCISE 30.5 PAGE NO: 30.44
Differentiate the following functions with respect to x:
o +1
r+1

1.

Solution:
Let us consider
y =

x2+1
x+1

We need to find dy/dx
We know that y is a fraction of two functions say u and v where,
u=x?+1andv=x+1

Joy=ulv

es
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Now let us apply quotient rule of differentiation.

By using quotient rule, we get

du  dw
dy _ i(E) = Yax Yax .
dx  dx\v vz ... Equation (1)
As,u=x2+1
M _ 2x21 40 = 2x . . i(x“) = nx™ 1
dx ... Equation (2) {Since, dx }
As v=x+1
o dx+1) =1 4 (gm) — pxo-1
ax  ax ... Equation (3) {Since, ax % ) = DX )
Now, from equation 1, we can find dv/dx
dy you_ v
dx wi
_ (x+ 1)Ex)-(x + 1)(1)
(x+1)* {Using equation 2 and 3}
2x% + Z2x—x%-1
T me1)2
®% 4+ 2x-1
T Txe1)
dy x%+ 2x—1 o9p — 1
Ldx T (x+ 12 Yol
Solution:

Let us consider

y=
2x —1
x2+1

We need to find dy/dx
We know thaty is a fraction of two functions say u and v where,

u=2x—1andv=x>+1
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Joy=ulv
Now let us apply quotient rule of differentiation.

By using quotient rule, we get

& _ () _ Ve
d« dx\w/ v .. Equation (1)
Asu=2x-1
du _ d -
o = X770 =2 poation (2) {Since, & XD = MX" Ty
As,.v=x2+1
dv.  d . 5 . d -
& T wX T D =2 L ation 3) (Since, ax %) = TXTh
Now, from equation 1, we can find dy/dx
dy pau_ dv
dx v
(P +1)(2)-(2x-1)(2x)
B (% +1)2 {Using equation 2 and 3}
22 -4 4 2x
S
=2+ 2%+ 2
(x? +1)2

dy _ 2(1+x—x%
nde (X212
xr + e®

'l—I—Engm

Solution:
Let us consider
y =

X+ e
1+ log x
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We know that y is a fraction of two functions say u and v where,
u=x+e*andv=1+logx

Joy=ulv

Now let us apply quotient rule of differentiation.

By using quotient rule, we get

du dw
& _ 4(4) _ vm
de  dx\v vz ... Equation 1
Asu=x-tef
E — i X i oy _ n—1 i Xy — nX
dx d_v:{x Te ){Si_uce, ax ) = nx &i“(e )=e ¥
du _ 4 4 rax) — x
dx dx(xj + dx{:e )=1+e ... Equation 2
As.v=1+logx
dv d
— = —(logx + 1
T~ ax 08 )
d (1) + d 1
= — — (logx
o 3 (108%)
dv 1 1 d 1
w - 0TS x ... Equation 3 {Smce,a(mg}{) T ox}
Now. from equation 1, we can find dy/dx
dy pio v
dx v2 .
dy (1 +logx)(1+e¥)—(x+ e)(3)
dx (logx +1)* {Using equation 2 and 3}
_ 1+&x+lugx+exlugx—1—e?x
o logx+1)?
xlog x(1 + %) + e¥[x—-1)
o x(logx+1)*
dy  xlogx(1+e€)—e(1-%)  _o_tane
. dx x(1 + logx)? 4 —
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Solution:
Let us consider
y =

e* — tanx
cotx — xn

We need to find dy/dx

We know that y is a fraction of two functions say u and v where,
u=e*—tanxandv =cotx—x"

Joy=ulv

Now let us apply quotient rule of differentiation.

By using quotient rule, we get
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du dw
v _ i(&) _ Vmm
dx  dx'\w/ w2 qul&tlﬂﬂ (1:}

Asu=¢e*—tanx

E — i X _ i — 2 i XY _ aX
~ = dx{E tanx) (Since, it{tanx) = sec’x & it{e )= e )
du _ 4 4 raxy _ 2 x
dx dx(tanx) + dx(e ) sectx + e Equatmn (2)
As. v=cotx—xt

dv
— = —(cotx —x"

% = dxl )

= i(mt:{] —i(x“] d 2¢ & L(xn
dx ax (Since, E{mtx) = —cosec°x & E{:X ) = nx

& — _cosec?x— nx"
dx ... Equation (3)
Now, from equation 1. we can find dy/dx
ay Jau_ dv
d«  v? {Using equation 2 and 3, we get}

dy _ (cotx—x")fsec®x +e¥)—(e¥ —tanx)(—cosec®x—nx" ")

dx (cotx—xT)2

dy  (cotx —x")(e* — sec’ x) + (e — tan x)(cosec® x + nx""1)
~dx (cot x — x™)?

5 amz—l—bm—l—c
‘px?+qx +r

Solution:
Let us consider
y =

ax> +bx + ¢
px2+qx +r

We need to find dy/dx

We know thaty is a fraction of two functions say u and v where,

n—1

}
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u=ax?+bx+candv=px>+qgx+r
Joy=ulv
Now let us apply quotient rule of differentiation.

By using quotient rule, we get

& _ () _ Ve
dx di v vZ Equahon (1)
As.u=axli+bx+c
du d -
o = 2%+ b poation (2) {Since, ax X ) = X7
As.v=pxitgxtr
dv i 2 _
= ‘h{px +qgqx+71) =2px + q .. Equation (3)
Now, from equation 1, we can find dv/dx
dy pau_dv
dx vE

. (px® + qx + r}{2ax+ b)—(ax® + bx + c)(2px + q)

B (px® +qx+1)? {Using equation 2 and 3}

2apx® + bpx® + 2agx® + bgx + 2arx + br—2apx® —agx®—2bpx®-bqx—2pcx—qc
(px? + gqx+1)?
agx®—bpx® + Zarx + br—2pex—qc
(px® + g +1)®
x%(ag-bp) + 2x(ar—pc) + br—qc
(px? + qx+1)°

dy x*(aq—bp) + 2x(ar—pc) + br—qc

. dx (px? + qx + 1)?

es
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About RD Sharma

RD Sharma isn't the kind of author you'd bump into at lit fests. But his
bestselling books have helped many CBSE students lose their dread of
maths. Sunday Times profiles the tutor turned internet star

He dreams of algorithms that would give most people nightmares. And,
spends every waking hour thinking of ways to explain concepts like 'series
solution of linear differential equations'. Meet Dr Ravi Dutt Sharma —
mathematics teacher and author of 25 reference books — whose name
evokes as much awe as the subject he teaches. And though students have
used his thick tomes for the last 31 years to ace the dreaded maths exam,
it's only recently that a spoof video turned the tutor into a YouTube star.

R D Sharma had a good laugh but said he shared little with his on-screen
persona except for the love for maths. "I like to spend all my time thinking
and writing about maths problems. I find it relaxing," he says. When he is
not writing books explaining mathematical concepts for classes 6 to 12 and
engineering students, Sharma is busy dispensing his duty as vice-principal
and head of department of science and humanities at Delhi government's
Guru Nanak Dev Institute of Technology.
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